2,383 research outputs found

    Comparative study of ordered and disordered Y1-xSrxCoO3-d

    Full text link
    We have succeeded in preparing A-site ordered- and disordered-Y1/4Sr3/4CoO3-d with various oxygen deficiencies delta, and have made comparative study of their structural and physical properties. In the A-site ordered structure, oxygen vacancies order, and d = 0.34 sample shows a weak ferromagnetic transition beyond 300 K. On the other hand, in the A-site disordered structure, no oxygen vacancy ordering is observed, and d = 0.16 sample shows a ferromagnetic metallic transition around 150 K. A-site disordering destroys the orderings of oxygen-vacancies and orbitals, leading to the strong modification of the electronic phases.Comment: 3 pages, 3 figures, proceeding of 52nd Mangetism and Magnetic Materials Conference (MMM 2007), published in Journal of Applied Physic

    Clustering of Conditional Mutual Information for Quantum Gibbs States above a Threshold Temperature

    Get PDF
    We prove that the quantum Gibbs states of spin systems above a certain threshold temperature are approximate quantum Markov networks, meaning that the conditional mutual information decays rapidly with distance. We demonstrate the exponential decay for short-ranged interacting systems and power-law decay for long-ranged interacting systems. Consequently, we establish the efficiency of quantum Gibbs sampling algorithms, a strong version of the area law, the quasilocality of effective Hamiltonians on subsystems, a clustering theorem for mutual information, and a polynomial-time algorithm for classical Gibbs state simulations

    Cr-doping effect on the orbital fluctuation of heavily doped Nd1-xSrxMnO3 (x ~ 0.625)

    Full text link
    We have investigated the Cr-doping effect of Nd0.375Sr0.625MnO3 near the phase boundary between the x2-y2 and 3z2-r2 orbital ordered states, where a ferromagnetic correlation and concomitant large magnetoresistance are observed owing to orbital fluctuation. Cr-doping steeply suppresses the ferromagnetic correlation and magnetoresistance in Nd0.375Sr0.625Mn1-yCryO3 with 0 < y < 0.05, while they reappear in 0.05 < y < 0.10. Such a reentrant behavior implies that a phase boundary is located at y = 0.05, or a phase crossover occurs across y = 0.05.Comment: 3 pages, 3 figures, to be published in Journal of Applied Physic

    Multiferroic properties of an \aa kermanite Sr2_2CoSi2_2O7_7 single crystal in high magnetic fields

    Full text link
    The magnetic and dielectric properties of \aa kermanite Sr2_2CoSi2_2O7_7 single crystals in high magnetic fields were investigated. We have observed finite induced electric polarization along the c axis in high fields, wherein all Co spins were forcibly aligned to the magnetic field direction. Existence of the induced polarization in the spin-polarized state accompanied with the finite slope in the magnetization curve suggests the possible role of the orbital angular momenta in the excited states as its microscopic origin. The emergence of the field-induced polarization without particular magnetic order can be regarded as the magnetoelectric effects of the second order from the symmetry point of view. A low magnetic field-driven electric polarization flip induced by a rotating field, even at room temperature, has been successfully demonstrated.Comment: 12 pages, 4 figure

    Phase equilibrium in two orbital model under magnetic field

    Full text link
    The phase equilibrium in manganites under magnetic field is studied using a two orbital model, based on the equivalent chemical potential principle for the competitive phases. We focus on the magnetic field induced melting process of CE phase in half-doped manganites. It is predicted that the homogenous CE phase begins to decompose into coexisting ferromagnetic phase and CE phase once the magnetic field exceeds the threshold field. In a more quantitative way, the volume fractions of the two competitive phases in the phase separation regime are evaluated.Comment: 4 pages, 4 figure

    Microwave properties of Nd_0.5Sr_0.5MnO_3: a key role of the (x^2-y^2)-orbital effects

    Full text link
    Transmittance of the colossal magnetoresistive compound Nd_0.5Sr_0.5MnO_3 showing metal-insulator phase transition has been studied by means of the submm- and mm-wavelength band spectroscopy. An unusually high transparency of the material provided direct evidence for the significant suppression of the coherent Drude weight in the ferromagnetic metallic state. Melting of the A-type antiferromagnetic states has been found to be responsible for a considerable increase in the microwave transmission, which was observed at the transition from the insulating to the metallic phase induced by magnetic field or temperature. This investigation confirmed a dominant role of the (x^2-y^2)-orbital degree of freedom in the low-energy optical properties of Nd_0.5Sr_0.5MnO_3 and other doped manganites with planar (x^2-y^2)-orbital order, as predicted theoretically. The results are discussed in terms of the orbital-liquid concept.Comment: 8 pages, 3 figure

    Chemical potential shift induced by double-exchange and polaronic effects in Nd_{1-x}Sr_xMnO_3

    Full text link
    We have studied the chemical potential shift as a function of temperature in Nd1x_{1-x}Srx_xMnO3_3 (NSMO) by measurements of core-level photoemission spectra. For ferromagnetic samples (x=0.4x=0.4 and 0.45), we observed an unusually large upward chemical potential shift with decreasing temperature in the low-temperature region of the ferromagnetic metallic (FM) phase. This can be explained by the double-exchange (DE) mechanism if the ege_g band is split by dynamical/local Jahn-Teller effect. The shift was suppressed near the Curie temperature (TCT_C), which we attribute to the crossover from the DE to lattice-polaron regimes.Comment: 5 pages, 6 figure

    Magnetic-field dependence of antiferromagnetic structure in CeRh1-xCoxIn5

    Full text link
    We investigated effects of magnetic field H on antiferromagnetic (AF) structures in CeRh_{1-x}Co_xIn_5 by performing the elastic neutron scattering measurements. By applying H along the [1,-1,0] direction, the incommensurate AF state with the propagation vector of q_{h1}=(1/2,1/2,0.297) observed at H=0 is replaced by the commensurate AF state with the q_{c2} = (1/2, 1/2, 1/4) modulation above 2 T for x=0.23, while the AF states with the q_{c1}=(1/2,1/2,1/2) and q_{h2}=(1/2,1/2,0.42) modulations seen at H=0 change into a single q_{c1}-AF state above ~1.6 T for x=0.7. These results suggest the different types of AF correlation for Co concentrations of 0.23 and 0.7 in an applied magnetic field H.Comment: 4 pages, 2 figures, to appear in the proceedings of ICM2009 (Karlsruhe, Germany
    corecore